Reflected BSDEs with nonpositive jumps, and controller-and-stopper games
Sébastien Choukroun,
Andrea Cosso and
Huyên Pham
Stochastic Processes and their Applications, 2015, vol. 125, issue 2, 597-633
Abstract:
We study a class of reflected backward stochastic differential equations with nonpositive jumps and upper barrier. Existence and uniqueness of a minimal solution are proved by a double penalization approach under regularity assumptions on the obstacle. In a suitable regime switching diffusion framework, we show the connection between our class of BSDEs and fully nonlinear variational inequalities. Our BSDE representation provides in particular a Feynman–Kac type formula for PDEs associated to general zero-sum stochastic differential controller-and-stopper games, where control affects both drift and diffusion term, and the diffusion coefficient can be degenerate. Moreover, we state a dual game formula of this BSDE minimal solution involving equivalent change of probability measures, and discount processes. This gives in particular a new representation for zero-sum stochastic differential controller-and-stopper games.
Keywords: Backward stochastic differential equations (BSDE) with constrained jumps; Reflected BSDE; Regime-switching jump–diffusion; Hamilton–Jacobi–Bellman Isaacs equation; Controller-and-stopper game (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491400221X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:2:p:597-633
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2014.09.015
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().