A fractional Brownian field indexed by L2 and a varying Hurst parameter
Alexandre Richard
Stochastic Processes and their Applications, 2015, vol. 125, issue 4, 1394-1425
Abstract:
Using structures of Abstract Wiener Spaces, we define a fractional Brownian field indexed by a product space (0,1/2]×L2(T,m), (T,m) a separable measure space, where the first coordinate corresponds to the Hurst parameter of fractional Brownian motion. This field encompasses a large class of existing fractional Brownian processes, such as Lévy fractional Brownian motions and multiparameter fractional Brownian motions, and provides a setup for new ones. We prove that it has satisfactory incremental variance in both coordinates and derive certain continuity and Hölder regularity properties in relation with metric entropy. Also, a sharp estimate of the small ball probabilities is provided, generalizing a result on Lévy fractional Brownian motion. Then, we apply these general results to multiparameter and set-indexed processes, proving the existence of processes with prescribed local Hölder regularity on general indexing collections.
Keywords: (multi)fractional Brownian motion; Gaussian fields; Gaussian measures; Abstract Wiener Spaces; Multiparameter and set-indexed processes; Sample paths properties (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914002695
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:4:p:1394-1425
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2014.11.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().