Generalised particle filters with Gaussian mixtures
D. Crisan and
K. Li
Stochastic Processes and their Applications, 2015, vol. 125, issue 7, 2643-2673
Abstract:
Stochastic filtering is defined as the estimation of a partially observed dynamical system. Approximating the solution of the filtering problem with Gaussian mixtures has been a very popular method since the 1970s. Despite nearly fifty years of development, the existing work is based on the success of the numerical implementation and is not theoretically justified. This paper fills this gap and contains a rigorous analysis of a new Gaussian mixture approximation to the solution of the filtering problem. We deduce the L2-convergence rate for the approximating system and show some numerical examples to test the new algorithm.
Keywords: Stochastic partial differential equation; Nonlinear filtering; Zakai equation; Particle filters; Gaussian mixtures; L2-convergence (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915000277
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:7:p:2643-2673
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.01.008
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().