On the limiting spectral distribution for a large class of symmetric random matrices with correlated entries
Marwa Banna,
Florence Merlevède and
Magda Peligrad
Stochastic Processes and their Applications, 2015, vol. 125, issue 7, 2700-2726
Abstract:
For symmetric random matrices with correlated entries, which are functions of independent random variables, we show that the asymptotic behavior of the empirical eigenvalue distribution can be obtained by analyzing a Gaussian matrix with the same covariance structure. This class contains both cases of short and long range dependent random fields. The technique is based on a blend of blocking procedure and Lindeberg’s method. This method leads to a variety of interesting asymptotic results for matrices with dependent entries, including applications to linear processes as well as nonlinear Volterra-type processes entries.
Keywords: Random matrices; Correlated entries; Sample covariance matrices; Weak dependence; Limiting spectral distribution (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915000290
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:7:p:2700-2726
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.01.010
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().