Convergence of generalized urn models to non-equilibrium attractors
Mathieu Faure () and
Sebastian J. Schreiber
Stochastic Processes and their Applications, 2015, vol. 125, issue 8, 3053-3074
Abstract:
Generalized Polya urn models have been used to model the establishment dynamics of a small founding population consisting of k different genotypes or strategies. As population sizes get large, these population processes are well-approximated by a mean limit ordinary differential equation whose state space is the k simplex. We prove that if this mean limit ODE has an attractor at which the temporal averages of the population growth rate is positive, then there is a positive probability of the population not going extinct (i.e. growing without bound) and its distribution converging to the attractor. Conversely, when the temporal averages of the population growth rate are negative along this attractor, the population distribution does not converge to the attractor. For the stochastic analog of the replicator equations which can exhibit non-equilibrium dynamics, we show that verifying the conditions for convergence and non-convergence reduces to a simple algebraic problem. We also apply these results to selection–mutation dynamics to illustrate convergence to periodic solutions of these population genetics models with positive probability.
Keywords: Markov chains; Urn models; Replicator equation; Selection–mutation dynamics; Non-equilibrium attractors (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915000617
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Convergence of generalized urn models to non-equilibrium attractors (2015)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:8:p:3053-3074
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.02.011
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().