Convergence and convergence rates for approximating ergodic means of functions of solutions to stochastic differential equations with Markov switching
Hongwei Mei and
George Yin
Stochastic Processes and their Applications, 2015, vol. 125, issue 8, 3104-3125
Abstract:
This work focuses on numerical algorithms for approximating the ergodic means for suitable functions of solutions to stochastic differential equations with Markov regime switching. Our main effort is devoted to obtaining the convergence and rates of convergence of the approximation algorithms. The study is carried out by obtaining laws of large numbers and laws of iterated logarithms for numerical approximation to long-run averages of suitable functions of solutions to switching diffusions.
Keywords: Switching diffusion; Recursive algorithm; Invariant measure; Law of iterated logarithm (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915000630
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:8:p:3104-3125
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.02.013
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().