Asymptotic properties of estimators in a stable Cox–Ingersoll–Ross model
Zenghu Li and
Chunhua Ma
Stochastic Processes and their Applications, 2015, vol. 125, issue 8, 3196-3233
Abstract:
We study the estimation of a stable Cox–Ingersoll–Ross model, which is a special subcritical continuous-state branching process with immigration. The exponential ergodicity and strong mixing property of the process are proved by a coupling method. The regular variation properties of distributions of the model are studied. The key is to establish the convergence of some point processes and partial sums associated with the model. From those results, we derive the consistency and central limit theorems of the conditional least squares estimators (CLSEs) and the weighted conditional least squares estimators (WCLSEs) of the drift parameters based on low frequency observations. The theorems show that the WCLSEs are more efficient than the CLSEs and their errors have distinct decay rates n−(α−1)/α and n−(α−1)/α2, respectively, as the sample sizes n goes to infinity. The arguments depend heavily on the recent results on the construction and characterization of the model in terms of stochastic equations.
Keywords: Stable Cox–Ingersoll–Ross model; Conditional least squares estimators; Weighted conditional least squares estimators; Branching process with immigration; Exponential ergodicity; Strong mixing property (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915000812
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:8:p:3196-3233
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.03.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().