A variation of the Canadisation algorithm for the pricing of American options driven by Lévy processes
Florian Kleinert and
Kees van Schaik
Stochastic Processes and their Applications, 2015, vol. 125, issue 8, 3234-3254
Abstract:
We introduce an algorithm for the pricing of finite expiry American options driven by Lévy processes. The idea is to tweak Carr’s ‘Canadisation’ method, cf. Carr (1998) (see also Bouchard et al. (2005)), in such a way that the adjusted algorithm is viable for any Lévy process whose law at an independent, exponentially distributed time consists of a (possibly infinite) mixture of exponentials. This includes Brownian motion plus (hyper)exponential jumps, but also the recently introduced rich class of so-called meromorphic Lévy processes, cf. Kyprianou et al. (2012). This class contains all Lévy processes whose Lévy measure is an infinite mixture of exponentials which can generate both finite and infinite jump activity. Lévy processes well known in mathematical finance can in a straightforward way be obtained as a limit of meromorphic Lévy processes. We work out the algorithm in detail for the classic example of the American put, and we illustrate the results with some numerics.
Keywords: American options; Optimal stopping; Canadisation; Lévy processes; Meromorphic (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915000824
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:8:p:3234-3254
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.03.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().