EconPapers    
Economics at your fingertips  
 

Well-posedness of mean-field type forward–backward stochastic differential equations

A. Bensoussan, S.C.P. Yam and Z. Zhang

Stochastic Processes and their Applications, 2015, vol. 125, issue 9, 3327-3354

Abstract: Being motivated by a recent pioneer work Carmona and Delarue (2013), in this article, we propose a broad class of natural monotonicity conditions under which the unique existence of the solutions to Mean-Field Type (MFT) Forward–Backward Stochastic Differential Equations (FBSDE) can be established. Our conditions provided here are consistent with those normally adopted in the traditional FBSDE (without the interference of a mean-field) frameworks, and give a generic explanation on the unique existence of solutions to common MFT-FBSDEs, such as those in the linear-quadratic setting; besides, the conditions are ‘optimal’ in a certain sense that can elaborate on how their counter-example in Carmona and Delarue (2013) just fails to ensure its well-posedness. Finally, a stability theorem is also included.

Keywords: Mean-field type; Forward–backward stochastic differential equations; Monotonicity conditions; Well-posedness; Linear-quadratic setting (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915001076
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:9:p:3327-3354

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2015.04.006

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:125:y:2015:i:9:p:3327-3354