Well-posedness of mean-field type forward–backward stochastic differential equations
A. Bensoussan,
S.C.P. Yam and
Z. Zhang
Stochastic Processes and their Applications, 2015, vol. 125, issue 9, 3327-3354
Abstract:
Being motivated by a recent pioneer work Carmona and Delarue (2013), in this article, we propose a broad class of natural monotonicity conditions under which the unique existence of the solutions to Mean-Field Type (MFT) Forward–Backward Stochastic Differential Equations (FBSDE) can be established. Our conditions provided here are consistent with those normally adopted in the traditional FBSDE (without the interference of a mean-field) frameworks, and give a generic explanation on the unique existence of solutions to common MFT-FBSDEs, such as those in the linear-quadratic setting; besides, the conditions are ‘optimal’ in a certain sense that can elaborate on how their counter-example in Carmona and Delarue (2013) just fails to ensure its well-posedness. Finally, a stability theorem is also included.
Keywords: Mean-field type; Forward–backward stochastic differential equations; Monotonicity conditions; Well-posedness; Linear-quadratic setting (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915001076
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:9:p:3327-3354
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.04.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().