Pathwise uniqueness for the stochastic heat equation with Hölder continuous drift and noise coefficients
Leonid Mytnik and
Eyal Neuman
Stochastic Processes and their Applications, 2015, vol. 125, issue 9, 3355-3372
Abstract:
We study the solutions of the stochastic heat equation with multiplicative space–time white noise. We prove a comparison theorem between the solutions of stochastic heat equations with the same noise coefficient which is Hölder continuous of index γ>3/4, and drift coefficients that are Lipschitz continuous. Later we use the comparison theorem to get sufficient conditions for the pathwise uniqueness for solutions of the stochastic heat equation, when both the white noise and the drift coefficients are Hölder continuous.
Keywords: Stochastic partial differential equations; Pathwise uniqueness; White noise (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915001222
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:9:p:3355-3372
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.04.009
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().