EconPapers    
Economics at your fingertips  
 

Variance reduction for diffusions

Chii-Ruey Hwang, Raoul Normand and Sheng-Jhih Wu

Stochastic Processes and their Applications, 2015, vol. 125, issue 9, 3522-3540

Abstract: The most common way to sample from a probability distribution is to use Markov Chain Monte Carlo methods. One can find many diffusions with the target distribution as equilibrium measure, so that the state of the diffusion after a long time provides a good sample from that distribution. One naturally wants to choose the best algorithm. One way to do this is to consider a reversible diffusion, and add to it an antisymmetric drift which preserves the invariant measure. We prove that, in general, adding an antisymmetric drift reduces the asymptotic variance, and provide some extensions of this result.

Keywords: Asymptotic variance; Rate of convergence; Diffusion; Acceleration; Markov Chain Monte Carlo (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491500085X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:9:p:3522-3540

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2015.03.006

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:125:y:2015:i:9:p:3522-3540