Rate of convergence in first-passage percolation under low moments
Michael Damron and
Naoki Kubota
Stochastic Processes and their Applications, 2016, vol. 126, issue 10, 3065-3076
Abstract:
We consider first-passage percolation on the d dimensional cubic lattice for d≥2; that is, we assign independently to each edge e a nonnegative random weight te with a common distribution and consider the induced random graph distance (the passage time), T(x,y). It is known that for each x∈Zd, μ(x)=limnT(0,nx)/n exists and that 0≤ET(0,x)−μ(x)≤C‖x‖11/2log‖x‖1 under the condition Eeαte<∞ for some α>0. By combining tools from concentration of measure with Alexander’s methods, we show how such bounds can be extended to te’s with distributions that have only low moments. For such edge-weights, we obtain an improved bound C(‖x‖1log‖x‖1)1/2 and bounds on the rate of convergence to the limit shape.
Keywords: First-passage percolation; Concentration inequalities; Low moments; Rate of convergence (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915300557
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:10:p:3065-3076
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.04.001
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().