Maximum likelihood estimation for Wishart processes
Aurélien Alfonsi,
Ahmed Kebaier and
Clément Rey
Stochastic Processes and their Applications, 2016, vol. 126, issue 11, 3243-3282
Abstract:
In the last decade, there has been a growing interest to use Wishart processes for modeling, especially for financial applications. However, there are still few studies on the estimation of its parameters. Here, we study the Maximum Likelihood Estimator (MLE) in order to estimate the drift parameters of a Wishart process. We obtain precise convergence rates and limits for this estimator in the ergodic case and in some nonergodic cases. We check that the MLE achieves the optimal convergence rate in each case. Motivated by this study, we also present new results on the Laplace transform that extend the recent findings of Gnoatto and Grasselli (2014) and are of independent interest.
Keywords: Wishart processes; Laplace transform; Parameter inference; Maximum likelihood; Limit theorems; Local asymptotic properties (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915300181
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:11:p:3243-3282
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.04.026
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().