EconPapers    
Economics at your fingertips  
 

Extreme eigenvalues of sparse, heavy tailed random matrices

Antonio Auffinger and Si Tang

Stochastic Processes and their Applications, 2016, vol. 126, issue 11, 3310-3330

Abstract: We study the statistics of the largest eigenvalues of p×p sample covariance matrices Σp,n=Mp,nMp,n∗ when the entries of the p×n matrix Mp,n are sparse and have a distribution with tail t−α, α>0. On average the number of nonzero entries of Mp,n is of order nμ+1, 0≤μ≤1. We prove that in the large n limit, the largest eigenvalues are Poissonian if α<2(1+μ−1) and converge to a constant in the case α>2(1+μ−1). We also extend the results of Benaych-Georges and Péché (2014) in the Hermitian case, removing restrictions on the number of nonzero entries of the matrix.

Keywords: Random matrices; Heavy tail; Sparse; Eigenvalue distribution (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915300089
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:11:p:3310-3330

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2016.04.029

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:126:y:2016:i:11:p:3310-3330