Localisation in the Bouchaud–Anderson model
Stephen Muirhead and
Richard Pymar
Stochastic Processes and their Applications, 2016, vol. 126, issue 11, 3402-3462
Abstract:
It is well-known that both random branching and trapping mechanisms can induce localisation phenomena in random walks; the prototypical examples being the parabolic Anderson and Bouchaud trap models respectively. Our aim is to investigate how these localisation phenomena interact in a hybrid model combining the dynamics of the parabolic Anderson and Bouchaud trap models. Under certain natural assumptions, we show that the localisation effects due to random branching and trapping mechanisms tend to (i) mutually reinforce, and (ii) induce a local correlation in the random fields (the ‘fit and stable’ hypothesis of population dynamics).
Keywords: Parabolic Anderson model; Bouchaud trap model; Localisation; Intermittency (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916300539
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:11:p:3402-3462
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.04.033
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().