Asymptotic theory for large volatility matrix estimation based on high-frequency financial data
Donggyu Kim,
Yazhen Wang and
Jian Zou
Stochastic Processes and their Applications, 2016, vol. 126, issue 11, 3527-3577
Abstract:
In financial practices and research studies, we often encounter a large number of assets. The availability of high-frequency financial data makes it possible to estimate the large volatility matrix of these assets. Existing volatility matrix estimators such as kernel realized volatility and pre-averaging realized volatility perform poorly when the number of assets is very large, and in fact they are inconsistent when the number of assets and sample size go to infinity. In this paper, we introduce threshold rules to regularize kernel realized volatility, pre-averaging realized volatility, and multi-scale realized volatility. We establish asymptotic theory for these threshold estimators in the framework that allows the number of assets and sample size to go to infinity. Their convergence rates are derived under sparsity on the large integrated volatility matrix. In particular we have shown that the threshold kernel realized volatility and threshold pre-averaging realized volatility can achieve the optimal rate with respect to the sample size through proper bias corrections, but the bias adjustments cause the estimators to lose positive semi-definiteness; on the other hand, in order to be positive semi-definite, the threshold kernel realized volatility and threshold pre-averaging realized volatility have slower convergence rates with respect to the sample size. A simulation study is conducted to check the finite sample performances of the proposed threshold estimators with over hundred assets.
Keywords: Multi-scale realized volatility; Kernel realized volatility; Pre-averaging realized volatility; Regularization; Sparsity; Threshold; Diffusion; Integrated volatility (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915300521
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:11:p:3527-3577
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.05.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().