EconPapers    
Economics at your fingertips  
 

Convergence of quantile and depth regions

James Kuelbs and Joel Zinn

Stochastic Processes and their Applications, 2016, vol. 126, issue 12, 3681-3700

Abstract: Since contours of multi-dimensional depth functions often characterize the distribution, it has become of interest to consider structural properties and limit theorems for the sample contours (see Zuo and Serfling (2000)). For finite dimensional data Massé and Theodorescu (1994) [14] and Kong and Mizera (2012) have made connections of directional quantile envelopes to level sets of half-space (Tukey) depth. In the recent paper (Kuelbs and Zinn, 2014) we showed that half-space depth regions determined by evaluation maps of a stochastic process are not only uniquely determined by related upper and lower quantile functions for the process, but limit theorems have also been obtained. In this paper we study the consequences of these results when applied to finite dimensional data in greater detail. The methods we employ here are based on Kuelbs and Zinn (2015) and Kuelbs and Zinn (2013).

Keywords: Depth; Tukey depth; Consistency; Central limit theorems; Empirical processes; Convergence of empirical quantile and depth regions (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916300333
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:12:p:3681-3700

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2016.04.011

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:126:y:2016:i:12:p:3681-3700