Robust estimation of U-statistics
Emilien Joly and
Gábor Lugosi
Stochastic Processes and their Applications, 2016, vol. 126, issue 12, 3760-3773
Abstract:
An important part of the legacy of Evarist Giné is his fundamental contributions to our understanding of U-statistics and U-processes. In this paper we discuss the estimation of the mean of multivariate functions in case of possibly heavy-tailed distributions. In such situations, reliable estimates of the mean cannot be obtained by usual U-statistics. We introduce a new estimator, based on the so-called median-of-means technique. We develop performance bounds for this new estimator that generalizes an estimate of Arcones and Giné (1993), showing that the new estimator performs, under minimal moment conditions, as well as classical U-statistics for bounded random variables. We discuss an application of this estimator to clustering.
Keywords: U-statistics; Robust estimation; Median-of-means estimator (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916300436
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:12:p:3760-3773
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.04.021
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().