EconPapers    
Economics at your fingertips  
 

Minimal penalty for Goldenshluger–Lepski method

C. Lacour and P. Massart

Stochastic Processes and their Applications, 2016, vol. 126, issue 12, 3774-3789

Abstract: This paper is concerned with adaptive nonparametric estimation using the Goldenshluger–Lepski selection method. This estimator selection method is based on pairwise comparisons between estimators with respect to some loss function. The method also involves a penalty term that typically needs to be large enough in order that the method works (in the sense that one can prove some oracle type inequality for the selected estimator). In the case of density estimation with kernel estimators and a quadratic loss, we show that the procedure fails if the penalty term is chosen smaller than some critical value for the penalty: the minimal penalty. More precisely we show that the quadratic risk of the selected estimator explodes when the penalty is below this critical value while it stays under control when the penalty is above this critical value. This kind of phase transition phenomenon for penalty calibration has already been observed and proved for penalized model selection methods in various contexts but appears here for the first time for the Goldenshluger–Lepski pairwise comparison method. Some simulations illustrate the theoretical results and lead to some hints on how to use the theory to calibrate the method in practice.

Keywords: Nonparametric statistics; Adaptive estimation; Minimal penalty (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916300370
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:12:p:3774-3789

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2016.04.015

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:126:y:2016:i:12:p:3774-3789