On an approach to boundary crossing by stochastic processes
Mark Brown,
Victor H. de la Peña,
Michael J. Klass and
Tony Sit
Stochastic Processes and their Applications, 2016, vol. 126, issue 12, 3843-3853
Abstract:
In this paper we provide an overview as well as new (definitive) results of an approach to boundary crossing. The first published results in this direction appeared in de la Peña and Giné (1999) book on decoupling. They include order of magnitude bounds for the first hitting time of the norm of continuous Banach-Space valued processes with independent increments. One of our main results is a sharp lower bound for the first hitting time of càdlàg real-valued processes X(t), where X(0)=0 with arbitrary dependence structure: ETrγ≥∫01{a−1(rα)}γdα, where Tr=inf{t>0:X(t)≥r},a(t)=E{sup0≤s≤tX(s)} and γ>0. Under certain extra conditions, we also obtain an upper bound for ETrγ. As the main text suggests, although Tr is defined as the hitting time of X(t) hitting a level boundary, the bounds developed can be extended to more general processes and boundaries. We shall illustrate applications of the bounds derived for additive processes, Gaussian Processes, Bessel Processes, Bessel bridges among others. By considering the non-random function a(t), we can show that in various situations, ETr≈a−1(r).
Keywords: First-hitting time; Renewal theory; Decoupling; Probability bounds (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916300497
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:12:p:3843-3853
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.04.027
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().