Large deviations for weighted empirical measures arising in importance sampling
Henrik Hult and
Pierre Nyquist
Stochastic Processes and their Applications, 2016, vol. 126, issue 1, 138-170
Abstract:
In this paper the efficiency of an importance sampling algorithm is studied by means of large deviations for the associated weighted empirical measure. The main result, stated as a Laplace principle for these weighted empirical measures, can be viewed as an extension of Sanov’s theorem. The main theorem is used to quantify the performance of an importance sampling algorithm over a collection of subsets of a given target set as well as quantile estimates. The analysis yields an estimate of the sample size needed to reach a desired precision and of the reduction in cost compared to standard Monte Carlo.
Keywords: Large deviations; Empirical measures; Importance sampling; Monte Carlo (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915002100
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:1:p:138-170
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.08.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().