On the stationary tail index of iterated random Lipschitz functions
Gerold Alsmeyer
Stochastic Processes and their Applications, 2016, vol. 126, issue 1, 209-233
Abstract:
Let Ψ,Ψ1,Ψ2,… be a sequence of i.i.d. random Lipschitz maps from a complete separable metric space (X,d) with unbounded metric d to itself and let Xn=Ψn∘⋯∘Ψ1(X0) for n=1,2,… be the associated Markov chain of forward iterations with initial value X0 which is independent of the Ψn. Provided that (Xn)n≥0 has a stationary law π and picking an arbitrary reference point x0∈X, we will study the tail behavior of d(x0,X0) under Pπ, viz. the behavior of Pπ(d(x0,X0)>t) as t→∞, in cases when there exist (relatively simple) nondecreasing continuous random functions F,G:R≥→R≥ such that F(d(x0,x))≤d(x0,Ψ(x))≤G(d(x0,x)) for all x∈X and n≥1. In a nutshell, our main result states that, if the iterations of i.i.d. copies of F and G constitute contractive iterated function systems with unique stationary laws πF and πG having power tails of order ϑF and ϑG at infinity, respectively, then lower and upper tail index of ν=Pπ(d(x0,X0)∈⋅) (to be defined in Section 2) are falling in [ϑG,ϑF]. If ϑF=ϑG, which is the most interesting case, this leads to the exact tail index of ν. We illustrate our method, which may be viewed as a supplement of Goldie’s implicit renewal theory, by a number of popular examples including the AR(1)-model with ARCH errors and random logistic transforms.
Keywords: Iterated function system; Random Lipschitz function; Mean and strongly contractive; Stationary law; Stochastic fixed-point equation; Tail index; Implicit renewal theory; AR(1)-model with ARCH errors; Random logistic transform; Stochastic Ricker model (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915002161
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:1:p:209-233
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.08.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().