Iterated random functions and slowly varying tails
Piotr Dyszewski
Stochastic Processes and their Applications, 2016, vol. 126, issue 2, 392-413
Abstract:
Consider a sequence of i.i.d. random Lipschitz functions {Ψn}n≥0. Using this sequence we can define a Markov chain via the recursive formula Rn+1=Ψn+1(Rn). It is a well known fact that under some mild moment assumptions this Markov chain has a unique stationary distribution. We are interested in the tail behaviour of this distribution in the case when Ψ0(t)≈A0t+B0. We will show that under subexponential assumptions on the random variable log+(A0∨B0) the tail asymptotic in question can be described using the integrated tail function of log+(A0∨B0). In particular we will obtain new results for the random difference equation Rn+1=An+1Rn+Bn+1.
Keywords: Stochastic recursions; Random difference equation; Stationary distribution; Subexponential distributions (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915002239
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:2:p:392-413
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.09.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().