Random mass splitting and a quenched invariance principle
Sayan Banerjee and
Christopher Hoffman
Stochastic Processes and their Applications, 2016, vol. 126, issue 2, 608-627
Abstract:
We will investigate a random mass splitting model and the closely related random walk in a random environment (RWRE). The heat kernel for the RWRE at time t is the mass splitting distribution at t. We prove a quenched invariance principle (QIP) for the RWRE which gives us a quenched central limit theorem for the mass splitting model. Our RWRE has an environment which is changing with time. We follow the outline for proving a QIP for a random walk in a space–time random environment laid out by Rassoul-Agha and Seppäläinen (2005) which in turn was based on the work of Kipnis and Varadhan (1986) and others.
Keywords: Random walk in random environment; Invariance principle (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915002306
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:2:p:608-627
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.09.012
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().