EconPapers    
Economics at your fingertips  
 

Random mass splitting and a quenched invariance principle

Sayan Banerjee and Christopher Hoffman

Stochastic Processes and their Applications, 2016, vol. 126, issue 2, 608-627

Abstract: We will investigate a random mass splitting model and the closely related random walk in a random environment (RWRE). The heat kernel for the RWRE at time t is the mass splitting distribution at t. We prove a quenched invariance principle (QIP) for the RWRE which gives us a quenched central limit theorem for the mass splitting model. Our RWRE has an environment which is changing with time. We follow the outline for proving a QIP for a random walk in a space–time random environment laid out by Rassoul-Agha and Seppäläinen (2005) which in turn was based on the work of Kipnis and Varadhan (1986) and others.

Keywords: Random walk in random environment; Invariance principle (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915002306
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:2:p:608-627

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2015.09.012

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:126:y:2016:i:2:p:608-627