Weak approximation of martingale representations
Rama Cont and
Yi Lu
Stochastic Processes and their Applications, 2016, vol. 126, issue 3, 857-882
Abstract:
We present a systematic method for computing explicit approximations to martingale representations for a large class of Brownian functionals. The approximations are obtained by computing a directional derivative of the weak Euler scheme and yield a consistent estimator for the integrand in the martingale representation formula for any square-integrable functional of the solution of an SDE with path-dependent coefficients. Explicit convergence rates are derived for functionals which are Lipschitz-continuous in the supremum norm. Our results require neither the Markov property, nor any differentiability conditions on the functional or the coefficients of the stochastic differential equations involved.
Keywords: Martingale representation; Semimartingale; Functional calculus; Functional Ito calculus; Clark–Ocone formula; Malliavin calculus; Stochastic differential equations; Euler approximation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915002501
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:3:p:857-882
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.10.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().