Fluctuation theorems for synchronization of interacting Pólya’s urns
Irene Crimaldi,
Paolo Dai Pra and
Ida Germana Minelli
Stochastic Processes and their Applications, 2016, vol. 126, issue 3, 930-947
Abstract:
We consider a system of N two-colors urns in which the reinforcement of each urn depends also on the content of all the other urns. This interaction is of mean-field type and it is tuned by a parameter α∈[0,1]; in particular, for α=0 the N urns behave as N independent Pólya’s urns. For α>0 urns synchronize, in the sense that the fraction of balls of a given color converges a.s. to the same (random) limit in all urns. In this paper we study fluctuations around this synchronized regime. The scaling of these fluctuations depends on the parameter α. In particular the standard scaling t−1/2 appears only for α>1/2. For α≥1/2 we also determine the limit distribution of the rescaled fluctuations. We use the notion of stable convergence, which is stronger than convergence in distribution.
Keywords: Central limit theorem; Fluctuation theorem; Interacting system; Stable convergence; Synchronization; Urn model (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915002537
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:3:p:930-947
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.10.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().