Hamilton’s Harnack inequality and the W-entropy formula on complete Riemannian manifolds
Xiang-Dong Li
Stochastic Processes and their Applications, 2016, vol. 126, issue 4, 1264-1283
Abstract:
In this paper, we prove Hamilton’s Harnack inequality and the gradient estimates of the logarithmic heat kernel for the Witten Laplacian on complete Riemannian manifolds. As applications, we prove the W-entropy formula for the Witten Laplacian on complete Riemannian manifolds, and prove a family of logarithmic Sobolev inequalities on complete Riemannian manifolds with natural geometric condition.
Keywords: Hamilton’s Harnack inequality; Gradient estimates; Logarithmic heat kernel; Witten Laplacian; W-entropy formula (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915002665
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:4:p:1264-1283
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.11.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().