EconPapers    
Economics at your fingertips  
 

Hamilton’s Harnack inequality and the W-entropy formula on complete Riemannian manifolds

Xiang-Dong Li

Stochastic Processes and their Applications, 2016, vol. 126, issue 4, 1264-1283

Abstract: In this paper, we prove Hamilton’s Harnack inequality and the gradient estimates of the logarithmic heat kernel for the Witten Laplacian on complete Riemannian manifolds. As applications, we prove the W-entropy formula for the Witten Laplacian on complete Riemannian manifolds, and prove a family of logarithmic Sobolev inequalities on complete Riemannian manifolds with natural geometric condition.

Keywords: Hamilton’s Harnack inequality; Gradient estimates; Logarithmic heat kernel; Witten Laplacian; W-entropy formula (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915002665
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:4:p:1264-1283

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2015.11.002

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:126:y:2016:i:4:p:1264-1283