Einstein relation for reversible random walks in random environment on Z
Hoang-Chuong Lam and
Jerome Depauw
Stochastic Processes and their Applications, 2016, vol. 126, issue 4, 983-996
Abstract:
The aim of this paper is to consider reversible random walk in a random environment in one dimension and prove the Einstein relation for this model. It says that the derivative at 0 of the effective velocity under an additional local drift equals the diffusivity of the model without drift (Theorem 1.2). Our method here is very simple: we solve the Poisson equation (Pω−I)g=f and then use the pointwise ergodic theorem in Wiener (1939) [10] to treat the limit of the solutions to obtain the desired result. There are analogous results for Markov processes with discrete space and for diffusions in random environment.
Keywords: Einstein relation; Random walk; Random environment (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915002550
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:4:p:983-996
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.10.007
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().