Asymptotic formula for the tail of the maximum of smooth stationary Gaussian fields on non locally convex sets
Jean-Marc Azaïs and
Viet-Hung Pham
Stochastic Processes and their Applications, 2016, vol. 126, issue 5, 1385-1411
Abstract:
In this paper we consider the distribution of the maximum of a Gaussian field defined on non locally convex sets. Adler and Taylor or Azaïs and Wschebor give the expansions in the locally convex case. The present paper generalizes their results to the non locally convex case by giving a full expansion in dimension 2 and some generalizations in higher dimension. For a given class of sets, a Steiner formula is established and the correspondence between this formula and the tail of the maximum is proved. The main tool is a recent result of Azaïs and Wschebor that shows that under some conditions the excursion set is close to a ball with a random radius. Examples are given in dimension 2 and higher.
Keywords: Stochastic processes; Gaussian fields; Rice formula; Distribution of the maximum; Non locally convex indexed set (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915002963
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:5:p:1385-1411
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.11.007
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().