Locally stationary Hawkes processes
François Roueff,
Rainer von Sachs and
Laure Sansonnet
Stochastic Processes and their Applications, 2016, vol. 126, issue 6, 1710-1743
Abstract:
This paper addresses the generalization of stationary Hawkes processes in order to allow for a time-evolving second-order analysis. Motivated by the concept of locally stationary autoregressive processes, we apply however inherently different techniques to describe the time-varying dynamics of self-exciting point processes. In particular we derive a stationary approximation of the Laplace functional of a locally stationary Hawkes process. This allows us to define a local mean density function and a local Bartlett spectrum which can be used to compute approximations of first and second order moments of the process. We complete the paper by some insightful simulation studies.
Keywords: Locally stationary processes; Hawkes processes; Bartlett spectrum; Time–frequency analysis; Point processes (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915003075
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:6:p:1710-1743
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.12.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().