Large deviations for Markov-modulated diffusion processes with rapid switching
Gang Huang,
Michel Mandjes and
Peter Spreij
Stochastic Processes and their Applications, 2016, vol. 126, issue 6, 1785-1818
Abstract:
In this paper, we study small noise asymptotics of Markov-modulated diffusion processes in the regime that the modulating Markov chain is rapidly switching. We prove the joint sample-path large deviations principle for the Markov-modulated diffusion process and the occupation measure of the Markov chain (which evidently also yields the large deviations principle for each of them separately by applying the contraction principle). The structure of the proof is such that we first prove exponential tightness, and then establish a local large deviations principle (where the latter part is split into proving the corresponding upper bound and lower bound).
Keywords: Diffusion processes; Markov modulation; Large deviations; Stochastic exponentials; Occupation measure (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915003221
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:6:p:1785-1818
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.12.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().