EconPapers    
Economics at your fingertips  
 

Exponential extinction time of the contact process on finite graphs

Thomas Mountford, Jean-Christophe Mourrat, Daniel Valesin and Qiang Yao

Stochastic Processes and their Applications, 2016, vol. 126, issue 7, 1974-2013

Abstract: We study the extinction time τ of the contact process started with full occupancy on finite trees of bounded degree. We show that, if the infection rate is larger than the critical rate for the contact process on Z, then, uniformly over all trees of degree bounded by a given number, the expectation of τ grows exponentially with the number of vertices. Additionally, for any increasing sequence of trees of bounded degree, τ divided by its expectation converges in distribution to the unitary exponential distribution. These results also hold if one considers a sequence of graphs having spanning trees with uniformly bounded degree, and provide the basis for powerful coarse-graining arguments. To demonstrate this, we consider the contact process on a random graph with vertex degrees following a power law. Improving a result of Chatterjee and Durrett (2009), we show that, for any non-zero infection rate, the extinction time for the contact process on this graph grows exponentially with the number of vertices.

Keywords: Contact process; Interacting particle systems; Metastability (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916000028
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:7:p:1974-2013

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2016.01.001

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:126:y:2016:i:7:p:1974-2013