Statistical inference for time-changed Lévy processes via Mellin transform approach
Denis Belomestny and
John Schoenmakers
Stochastic Processes and their Applications, 2016, vol. 126, issue 7, 2092-2122
Abstract:
Given a Lévy process (Lt)t≥0 and an independent nondecreasing process (time change) (T(t))t≥0, we consider the problem of statistical inference on T based on low-frequency observations of the time-changed Lévy process LT(t). Our approach is based on the genuine use of Mellin and Laplace transforms. We propose a consistent estimator for the density of the increments of T in a stationary regime, derive its convergence rates and prove the optimality of the rates. It turns out that the convergence rates heavily depend on the decay of the Mellin transform of T. Finally, the performance of the estimator is analysed via a Monte Carlo simulation study.
Keywords: Time-changed Lévy processes; Low-frequency observations; Mellin transform; Laplace transform (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916000168
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:7:p:2092-2122
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.01.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().