EconPapers    
Economics at your fingertips  
 

Averaging along irregular curves and regularisation of ODEs

R. Catellier and M. Gubinelli

Stochastic Processes and their Applications, 2016, vol. 126, issue 8, 2323-2366

Abstract: We consider the ordinary differential equation (ODE) dxt=b(t,xt)dt+dwt where w is a continuous driving function and b is a time-dependent vector field which possibly is only a distribution in the space variable. We quantify the regularising properties of an arbitrary continuous path w on the existence and uniqueness of solutions to this equation. In this context we introduce the notion of ρ-irregularity and show that it plays a key role in some instances of the regularisation by noise phenomenon. In the particular case of a function w sampled according to the law of the fractional Brownian motion of Hurst index H∈(0,1), we prove that almost surely the ODE admits a solution for all b in the Besov–Hölder space B∞,∞α+1 with α>−1/2H. If α>1−1/2H then the solution is unique among a natural set of continuous solutions. If H>1/3 and α>3/2−1/2H or if α>2−1/2H then the equation admits a unique Lipschitz flow. Note that when α<0 the vector field b is only a distribution, nonetheless there exists a natural notion of solution for which the above results apply.

Keywords: Regularization by noise; Stochastic differential equation; Young integral; Fractional Brownian motion (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916000235
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:8:p:2323-2366

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2016.02.002

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:126:y:2016:i:8:p:2323-2366