EconPapers    
Economics at your fingertips  
 

Hawkes and INAR(∞) processes

Matthias Kirchner

Stochastic Processes and their Applications, 2016, vol. 126, issue 8, 2494-2525

Abstract: In this paper, we discuss integer-valued autoregressive time series (INAR), Hawkes point processes, and their interrelationship. Besides presenting structural analogies, we derive a convergence theorem. More specifically, we generalize the well-known INAR(p), p∈N, time series model to a corresponding model of infinite order: the INAR(∞) model. We establish existence, uniqueness, finiteness of moments, and give formulas for the autocovariance function as well as for the joint moment-generating function. Furthermore, we derive a branching-process–as well as an AR(∞)–and an MA(∞) representation for the model. We compare Hawkes process properties with their INAR(∞) counterparts. Given a Hawkes process N, in the main theorem of the paper we construct an INAR(∞)-based family of point processes and prove its convergence to N. This connection between INAR and Hawkes models will be relevant in applications.

Keywords: Hawkes process; Integer-valued time series; Weak convergence of point processes; Branching process (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916000399
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:8:p:2494-2525

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2016.02.008

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:126:y:2016:i:8:p:2494-2525