The gap between Gromov-vague and Gromov–Hausdorff-vague topology
Siva Athreya,
Wolfgang Löhr and
Anita Winter
Stochastic Processes and their Applications, 2016, vol. 126, issue 9, 2527-2553
Abstract:
In Athreya et al. (2015) an invariance principle is stated for a class of strong Markov processes on tree-like metric measure spaces. It is shown that if the underlying spaces converge Gromov vaguely, then the processes converge in the sense of finite dimensional distributions. Further, if the underlying spaces converge Gromov–Hausdorff vaguely, then the processes converge weakly in path space. In this paper we systematically introduce and study the Gromov-vague and the Gromov–Hausdorff-vague topology on the space of equivalence classes of metric boundedly finite measure spaces. The latter topology is closely related to the Gromov–Hausdorff–Prohorov metric which is defined on different equivalence classes of metric measure spaces.
Keywords: Metric measure spaces; Gromov-vague topology; Gromov–Hausdorff-vague; Gromov-weak; Gromov–Hausdorff-weak; Gromov–Prohorov metric; Lower mass-bound property; Full support assumption; Coding trees by excursions; Kallenberg tree (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916000405
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:9:p:2527-2553
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.02.009
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().