Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting
T. Kruse and
A. Popier
Stochastic Processes and their Applications, 2016, vol. 126, issue 9, 2554-2592
Abstract:
We study the existence of a minimal supersolution for backward stochastic differential equations when the terminal data can take the value +∞ with positive probability. We deal with equations on a general filtered probability space and with generators satisfying a general monotonicity assumption. With this minimal supersolution we then solve an optimal stochastic control problem related to portfolio liquidation problems. We generalize the existing results in three directions: firstly there is no assumption on the underlying filtration (except completeness and quasi-left continuity), secondly we relax the terminal liquidation constraint and finally the time horizon can be random.
Keywords: Backward stochastic differential equations; Singular terminal condition; Stochastic control with constraints (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916000417
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:9:p:2554-2592
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.02.010
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().