Viscosity solutions of path-dependent integro-differential equations
Christian Keller
Stochastic Processes and their Applications, 2016, vol. 126, issue 9, 2665-2718
Abstract:
We extend the notion of viscosity solutions for path-dependent PDEs introduced by Ekren et al. (2014) to path-dependent integro-differential equations and establish well-posedness, i.e., existence, uniqueness, and stability, for a class of semilinear path-dependent integro-differential equations with uniformly continuous data. Closely related are non-Markovian backward SDEs with jumps, which provide a probabilistic representation for solutions of our equations. The results are potentially useful for applications using non-Markovian jump–diffusion models.
Keywords: Path-dependent integro-differential equations; Viscosity solutions; Backward SDEs with jumps; Skorokhod topologies; Martingale problems (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916000442
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:9:p:2665-2718
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.02.014
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().