EconPapers    
Economics at your fingertips  
 

The sequential empirical process of a random walk in random scenery

Martin Wendler

Stochastic Processes and their Applications, 2016, vol. 126, issue 9, 2787-2799

Abstract: A random walk in random scenery (Yn)n∈N is given by Yn=ξSn for a random walk (Sn)n∈N and i.i.d. random variables (ξn)n∈Z. In this paper, we will show the weak convergence of the sequential empirical process, i.e. the centered and rescaled empirical distribution function. The limit process shows a new type of behavior, combining properties of the limit in the independent case (roughness of the paths) and in the long range dependent case (self-similarity).

Keywords: Random walk; Random scenery; Empirical process (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491600048X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:9:p:2787-2799

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2016.03.002

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:126:y:2016:i:9:p:2787-2799