Stochastic integrals and BDG’s inequalities in Orlicz-type spaces
Yingchao Xie and
Xicheng Zhang
Stochastic Processes and their Applications, 2017, vol. 127, issue 10, 3228-3250
Abstract:
In this paper we extend an inequality of Lenglart et al. (1980, Lemma 1.1) to general continuous adapted stochastic processes with values in topological spaces. Using this inequality we prove Burkholder–Davies–Gundy’s inequality for stochastic integrals in Orlicz-type spaces (a class of quasi-Banach spaces) with respect to cylindrical Brownian motions. As an application, we show the well-posedness of stochastic heat equations in Orlicz spaces.
Keywords: Stochastic integral; Good λ-inequality; BDG’s inequality; Orlicz space; Quasi-Banach space; Regularly varying function (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917300297
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:10:p:3228-3250
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.02.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().