Generalized immediate exchange models and their symmetries
Frank Redig and
Federico Sau
Stochastic Processes and their Applications, 2017, vol. 127, issue 10, 3251-3267
Abstract:
We reconsider the discrete dual of the immediate exchange model and define a more general class of models where mass is split, exchanged and merged. We relate the splitting process to the symmetric inclusion process via thermalization and from that obtain symmetries and self-duality for it and its generalization. We show that analogous properties hold for models where the splitting is related to the symmetric exclusion process or to independent random walkers.
Keywords: Immediate exchange models; Self-duality; Thermalization; Symmetric inclusion process; Symmetries (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917300285
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:10:p:3251-3267
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.02.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().