EconPapers    
Economics at your fingertips  
 

Adaptive estimation for stochastic damping Hamiltonian systems under partial observation

Fabienne Comte, Clémentine Prieur and Adeline Samson

Stochastic Processes and their Applications, 2017, vol. 127, issue 11, 3689-3718

Abstract: The paper considers a process Zt=(Xt,Yt) where Xt is the position of a particle and Yt its velocity, driven by a hypoelliptic bi-dimensional stochastic differential equation. Under adequate conditions, the process is stationary and geometrically β-mixing. In this context, we propose an adaptive non-parametric kernel estimator of the stationary density p of Z, based on n discrete time observations with time step δ. Two observation schemes are considered: in the first one, Z is the observed process, in the second one, only X is measured. Estimators are proposed in both settings and upper risk bounds of the mean integrated squared error (MISE) are proved and discussed in each case, the second one being more difficult than the first one. We propose a data driven bandwidth selection procedure based on the Goldenshluger and Lespki (2011) method. In both cases of complete and partial observations, we can prove a bound on the MISE asserting the adaptivity of the estimator. In practice, we take advantage of a very recent improvement of the Goldenshluger and Lespki (2011) method provided by Lacour et al. (2016), which is computationally efficient and easy to calibrate. We obtain convincing simulation results in both observation contexts.

Keywords: Adaptive bandwidth selection; Hypoelliptic diffusion; Kernel density estimation; Partial observations (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917300844
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:11:p:3689-3718

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2017.03.011

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:127:y:2017:i:11:p:3689-3718