On the asymptotic normality of estimating the affine preferential attachment network models with random initial degrees
Fengnan Gao and
Aad van der Vaart
Stochastic Processes and their Applications, 2017, vol. 127, issue 11, 3754-3775
Abstract:
We consider the estimation of the affine parameter and power-law exponent in the preferential attachment model with random initial degrees. We derive the likelihood, and show that the maximum likelihood estimator (MLE) is asymptotically normal and efficient. We also propose a quasi-maximum-likelihood estimator (QMLE) to overcome the MLE’s dependence on the history of the initial degrees. To demonstrate the power of our idea, we present numerical simulations.
Keywords: Preferential attachment model; Complex networks; Statistical inference; Asymptotic normality (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917300819
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:11:p:3754-3775
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.03.008
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().