EconPapers    
Economics at your fingertips  
 

On the asymptotic normality of estimating the affine preferential attachment network models with random initial degrees

Fengnan Gao and Aad van der Vaart

Stochastic Processes and their Applications, 2017, vol. 127, issue 11, 3754-3775

Abstract: We consider the estimation of the affine parameter and power-law exponent in the preferential attachment model with random initial degrees. We derive the likelihood, and show that the maximum likelihood estimator (MLE) is asymptotically normal and efficient. We also propose a quasi-maximum-likelihood estimator (QMLE) to overcome the MLE’s dependence on the history of the initial degrees. To demonstrate the power of our idea, we present numerical simulations.

Keywords: Preferential attachment model; Complex networks; Statistical inference; Asymptotic normality (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917300819
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:11:p:3754-3775

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2017.03.008

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:127:y:2017:i:11:p:3754-3775