EconPapers    
Economics at your fingertips  
 

The value of foresight

Philip A. Ernst, L.C.G. Rogers and Quan Zhou

Stochastic Processes and their Applications, 2017, vol. 127, issue 12, 3913-3927

Abstract: Suppose you have one unit of stock, currently worth 1, which you must sell before time T. The Optional Sampling Theorem tells us that whatever stopping time we choose to sell, the expected discounted value we get when we sell will be 1. Suppose however that we are able to see a units of time into the future, and base our stopping rule on that; we should be able to do better than expected value 1. But how much better can we do? And how would we exploit the additional information? The optimal solution to this problem will never be found, but in this paper we establish remarkably close bounds on the value of the problem, and we derive a fairly simple exercise rule that manages to extract most of the value of foresight.

Keywords: Explicit stopping rules; Excursion processes; Insider trading; Bermudan fixed-window lookback option; Brownian motion (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917300923
Full text for ScienceDirect subscribers only

Related works:
Working Paper: The value of foresight (2016) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:12:p:3913-3927

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2017.03.019

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:127:y:2017:i:12:p:3913-3927