EconPapers    
Economics at your fingertips  
 

A Dirichlet form approach to MCMC optimal scaling

Giacomo Zanella, Mylène Bédard and Wilfrid S. Kendall

Stochastic Processes and their Applications, 2017, vol. 127, issue 12, 4053-4082

Abstract: This paper shows how the theory of Dirichlet forms can be used to deliver proofs of optimal scaling results for Markov chain Monte Carlo algorithms (specifically, Metropolis–Hastings random walk samplers) under regularity conditions which are substantially weaker than those required by the original approach (based on the use of infinitesimal generators). The Dirichlet form methods have the added advantage of providing an explicit construction of the underlying infinite-dimensional context. In particular, this enables us directly to establish weak convergence to the relevant infinite-dimensional distributions.

Keywords: Dirichlet form; Infinite-dimensional stochastic processes; Asymptotic analysis for MCMC; Markov chain Monte Carlo (MCMC); Metropolis–Hastings Random Walk (MHRW) sampler; Mosco convergence; Scaling limits; Optimal scaling; Weak convergence (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917300947
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:12:p:4053-4082

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2017.03.021

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:127:y:2017:i:12:p:4053-4082