An integral representation of dilatively stable processes with independent increments
T. Bhatti and
P. Kern
Stochastic Processes and their Applications, 2017, vol. 127, issue 1, 209-227
Abstract:
Dilative stability generalizes the property of selfsimilarity for infinitely divisible stochastic processes by introducing an additional scaling in the convolution exponent. Inspired by results of Iglói (2008), we will show how dilatively stable processes with independent increments can be represented by integrals with respect to time-changed Lévy processes. Via a Lamperti-type transformation these representations are shown to be closely connected to translatively stable processes of Ornstein–Uhlenbeck-type, where translative stability generalizes the notion of stationarity. The presented results complement corresponding representations for selfsimilar processes with independent increments known from the literature.
Keywords: Dilative stability; Translative stability; Lamperti transform; Additive process; Random integral representation; Wide sense Ornstein–Uhlenbeck process; Quasi-selfsimilar process; Time-stable process; Infinite divisibility with respect to time (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916300813
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:1:p:209-227
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.06.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().