Continuity and Gaussian two-sided bounds of the density functions of the solutions to path-dependent stochastic differential equations via perturbation
Seiichiro Kusuoka
Stochastic Processes and their Applications, 2017, vol. 127, issue 2, 359-384
Abstract:
We consider Markovian stochastic differential equations with low regular coefficients and their perturbations by adding a measurable bounded path-dependent drift term. When we assume the diffusion coefficient matrix is uniformly positive definite, then the solution to the perturbed equation is given by the Girsanov transformation of the original equation. By using the expression we obtain the Gaussian two-sided bounds and the continuity of the density function of the solution to the perturbed equation. We remark that the perturbation in the present paper is a stochastic analogue to the perturbation in the operator analysis.
Keywords: Stochastic differential equation; Path-dependent; Density function; Gaussian two-sided bounds (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916300850
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:2:p:359-384
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.06.011
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().