Statistical inference for perturbed multiscale dynamical systems
Siragan Gailus and
Konstantinos Spiliopoulos
Stochastic Processes and their Applications, 2017, vol. 127, issue 2, 419-448
Abstract:
We study statistical inference for small-noise-perturbed multiscale dynamical systems. We prove consistency, asymptotic normality, and convergence of all scaled moments of an appropriately constructed maximum likelihood estimator (MLE) for a parameter of interest, identifying precisely its limiting variance. We allow full dependence of coefficients on both slow and fast processes, which take values in the full Euclidean space; coefficients in the equation for the slow process need not be bounded and there is no assumption of periodic dependence. The results provide a theoretical basis for calibration of small-noise-perturbed multiscale dynamical systems. Data from numerical simulations are presented to illustrate the theory.
Keywords: Multiscale processes; Small noise; Parameter estimation; Stochastic dynamical systems (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916300874
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:2:p:419-448
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.06.013
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().