EconPapers    
Economics at your fingertips  
 

Generalized Poland–Scheraga denaturation model and two-dimensional renewal processes

Giambattista Giacomin and Maha Khatib

Stochastic Processes and their Applications, 2017, vol. 127, issue 2, 526-573

Abstract: The Poland–Scheraga model describes the denaturation transition of two complementary–in particular, equally long–strands of DNA, and it has enjoyed a remarkable success both for quantitative modeling purposes and at a more theoretical level. The solvable character of the homogeneous version of the model is one of features to which its success is due. In the bio-physical literature a generalization of the model, allowing different length and non complementarity of the strands, has been considered and the solvable character extends to this substantial generalization. We present a mathematical analysis of the homogeneous generalized Poland–Scheraga model. Our approach is based on the fact that such a model is a homogeneous pinning model based on a bivariate renewal process, much like the basic Poland–Scheraga model is a pinning model based on a univariate, i.e. standard, renewal. We present a complete analysis of the free energy singularities, which include the localization–delocalization critical point and (in general) other critical points that have been only partially captured in the physical literature. We obtain also precise estimates on the path properties of the model.

Keywords: DNA denaturation; Polymer pinning model; Two-dimensional renewal processes; Critical behavior; Sharp and large deviation estimates; Path properties (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915301368
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:2:p:526-573

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2016.06.017

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:127:y:2017:i:2:p:526-573