Strikingly simple identities relating exit problems for Lévy processes under continuous and Poisson observations
Hansjörg Albrecher and
Jevgenijs Ivanovs
Stochastic Processes and their Applications, 2017, vol. 127, issue 2, 643-656
Abstract:
We consider exit problems for general Lévy processes, where the first passage over a threshold is detected either immediately or at an epoch of an independent homogeneous Poisson process. It is shown that the two corresponding one-sided problems are related through a surprisingly simple identity. Moreover, we identify a simple link between two-sided exit problems with one continuous and one Poisson exit. Finally, identities for reflected processes and a link between some Parisian type exit problems are established. For spectrally one-sided Lévy processes this approach enables alternative proofs for a number of previously established identities, providing additional insight.
Keywords: Lévy processes; Exit problems; Poisson observation; Occupation times; Parisian ruin (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915300235
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:2:p:643-656
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.06.021
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().